Strides in Development of Medical Education

Document Type : Original Article


1 Ph.D. in Planning Distance Learning, Assistant Professor, Department of Educational Sciences, School of Educational Sciences and Psychology, Payame Noor University of Darab, Shiraz, Iran

2 M.Sc. in Educational Administration, Department of Educational Sciences, School of Educational Sciences and Psychology, Payame Noor University of Darab, Shiraz, Iran

3 M.Sc. in Psychology, Shiraz University of Medical Sciences, Shiraz, Iran


Background & Objective: The present study presents a model of effective factors in the intention to use information technology (IT) in teaching and learning among students of Payame Noor University and Shiraz University of Medical Sciences Iran Methods: This was a crosssectional study performed using Krejcie and Morgan s (1970) formula and by considering unreturned questionnaires and eliminating incomplete questionnaires The 120 questionnaires from students of Shiraz University of Medical Sciences and 317 questionnaires from Payame Noor University of Fars province were analyzed using path analysis and AMOS software Results: The results show that the impact of perceived ease of use on students intention to use IT is higher in Payame Noor University students (0338) than Shiraz University of Medical Sciences (0204) The impact of perceived usefulness on intention to use IT was higher among Shiraz University of Medical Sciences (0280) than Payame Noor University students (0218) Moreover the impact of goal achievement on perceived ease of IT use was higher in Payame Noor University students (0356) than Shiraz University of Medical Sciences students (0255) No significant differences were observed between the students of Shiraz University of Medical Sciences and Payame Noor University in other paths Conclusion: The data showed acceptable and favorable fitting with the model Based on the confirmed hypothesis the causal model presented in this study is an appropriate model for universities and other educational institutions that apply technologybased learning as an important strategy in their virtual courses


  1. Talebi S. (dissertation). Presenting the causal model of psychological variable (Computer experience, Subjective norm, Computer anxiety and Computer self efficacy) on actual use of information technology on the basis of Davis’s model. Fars: Payame Noor University of Fars; 2013. [In Persian]
  2. Allen IE, Seaman J. Learning on demand: Online education in the United States. Babson: Survey Research Group; 2011: 26.
  3. Jong D. (dissertation). Assessing Information Technology- Facilitated Learning in Adult and Higher Education. South Dakota: University of South Dakota; 2003.
  4. Hajforosh A, Ourangi. A investigating the result of ICT application at Tehran`s high schools. J Educ Innovation. 2004; 3(9): 11-31. [In Persian]
  5. Davidson-Shivers GV. Instructional technology in higher education. Trends and issues in instructional design and technology. 2002: 256-68.
  6. Johnson R, Hornik S, Salas E. An empirical examination of factors contributing to creation of successful e-learning environment. Int J Hum Comput Stud. 2008; 66(5): 356-69.
  7. Dillon A, Morris MG. How user perceptions influence software use. IEEE Software 1997; 14(4): 58-64.
  8. Tselios NK, Daskalakis S, Papadopoulou M. Assessing the Acceptance of a Blended Learning University Course. Educ Technol Soc 2011; 14 (2): 224–35.
  9. Venkatesh V, Davis FD. A theoretical extension of technology acceptance model: Four longitudinal filed studies. Management Science 2000; 46(2), 186-204.
  10. Saadé RG, Nebebe N, Tan W. Viability of the “Technology Acceptance Model” in Multimedia Learning Environments: A Comparative Study Interdisciplinary. Journal of Knowledge and Learning Objects 2007; 3(1): 175-84.
  11. Babaee N. (dissertation). Investigating Effective Factors and Presenting a Practical Guideline to Adoption Mobile Ticketing. Lulea: University of Lulea Technology; 2009.
  12. Lee YK. (dissertation). Factors Affecting Leaner Behavioral Intentions to Adopt Web based Learning Technology in Adult and Higher Education. South Dakota: University of South Dakota; 2001.
  13. Ku CH. (dissertation). Extending the Technology Acceptance Model Using Perceived user Resources in Higher Education Web- based Online Learning Courses. Florida: University of Central Florida; 2009.
  14. Reid M. (dissertation). Integrating Trust and Computer Self- Efficacy into the Technology Acceptance Model: Their Impact on customers’ use of Banking Information systems in Jamaica. Florida: University of Nova Southeastern; 2008.
  15. Dorrani k, Rashidi Zinvestigating. The effective factors on technology acceptance among teachers of smart schools at Tehran with emphasizing on TAM model. J Res Educ System. 2007; 1(1): 23-46. [In Persian]
  16. Delice M. (dissertation). Explanation of police officers` information technology acceptance using the technology acceptance model and social cognitive theory. Louisville: University of Louisville; 2009.
  17. Chatzoglou PD, Sarigiannidis L, Vraimaki E, Diamantidis A. Investigating Greek employees’intention to  use  web-based training.  Comput  Educ  2009;  53(3):  877-89. 
  18. Ajzen  I,  Fishbein,  M.  Understanding Attitudes  and  Predicting  Social  Behavior. Englewood  Cliffs:  Prentice-Hall;  1980.
  19. Sun H,  Zhang  P.  An  Exploration  of  Affect Factors  and  Their  Role  in  User  Technology Acceptance:  Mediation  and  Causality.  J  Am Soc  Inf  Sci  Technol  2008;  59  (8):1252-63.
  20. Sokura  B,  Tuunainen  V,  Öörni  A.  The  Role of  Training  in  Decreasing  Anxiety  among Experienced  Computer  Users.  Association for  Information  Systems  AIS  Electronic Library  (AISeL).  2012.
  21. Agarwal  R,  Karahanna  E.  Time  flies  whit you're  having  fun:  cognitive  absorption  and beliefs  about  information  technology  usage. MIS  quarterly  2000;  24  (4):  665-94.  
  22. Saade R,  Bahli  B.  The  impact  of  cognitive absorption  on  perceived  usefulness  and perceived  ease  of  use  in  on-line  learning:  an extension  of  the  technology  acceptance model.  Info  Manag  2005;  42(2):  317  -27.
  23. Ma Q,  Liu  L.  The  Technology  Acceptance Model:  A  Meta-Analysis  of  Empirical Findings.  J  Organ  End  User  Comput  2004; 16(1):  59-72.
  24. Liao  C,  Tsou  CW,  Shu  Y.  The  Roles  of Perceived  Enjoyment  and  Price  Perception  in Determining  Acceptance  of  Multimedia-onDemand.  Int  J  Business  Info  2008;  3(1):  2752.
  25. Lee  S,  Kim  B.  Factors  affecting  the  usage  of intranet:  A  confirmatory  study.  Comput  Hum Behav  2009;  25():  191-201. 
  26. Vankatesh  V.  Determinants  of  Perceived Ease  of  Use:  Integrating  Control,  Intrinsic Motivation, and Emotion into the Technology  Acceptance  Model.  Info  System Res  2000;  11  (4):  342-65.
  27. Liang  Z.  (dissertation).  Understanding internet  piracy  among  university  students: peer-to-peer  music  downloading.  Albany: University  of  Albany;  2007.
  28. Shiue Y  M.  Investigating  the  sources  of teachers’ instructional technology  use through  the  decomposed  theory  of  planned behavior.  J  Educ  Comput  Res  2007;  36(4): 425-53. 
  29. Chau  PY.  Influence  of  computer  attitude  and self-  efficacy  on  IT  usage  behavior.  J  Organ End  User  Comput  2001;  13(1):  26-33.
  30. Yusoff Y,  Muhammad  Z,  Robert  E. Individual  Differences,  Perceived  Ease  of Use,  and  Perceived  Usefulness  in  the  ELibrary  Usage.  Comput  Info  Sci  2009;  2(1) 76-83.  
  31. Sen S.  (dissertation).  The  effect  of technology  acceptance  on  postsecondary African-American  students’  achievement  in mathematics:  A  path  analytic  inquiry. Florida:  University  of  Central  Florida;  2005.
  32. Ruth  CJ.  (dissertation).  Appling  a  modified technology  acceptance  model  to  determine factors  affecting  behavioral  intentions  to adopt  electronic  shopping  on  the  World  Wide Web:  a  structural  equation  modeling approach.  Philadelphia:  University  of  Drexel; 2000.
  33. Yang SK. (dissertation). Teachers’ Perception  of  Use  of  Student  Performance Information:  Technology  Acceptance  Model. Austin:  University  of  Texas  at  Austin;  2003.
  34. Yang H.  (dissertation).  The  Effect  of Technology  Acceptance  on  Undergraduate Students’ Usage  of  WEBCT  as  a Collaborative  Tool.  Florida:  University  of Central  Florida;  2007.
  35. Park N.  (dissertation).  User  Acceptance  of Computer-based  VOIP  Phone  Service:  An Application  of  the  Technology  Acceptance Model.  Los  Angeles:  University  of  Southern California;  2007.
  36. Teo  T,  Lee  CB,  Chai  CS.  Understanding  perservice  teachers'  computer  attitudes:  applying and  extending  the  technology  acceptance model.  Journal  of  Computer  Assisted Learning  2008;  24(2):  128-43.
  37. Porter C,  Donthu  N.  Using  the  technology acceptance  model  to  explain  how  attitudes determine  Internet  usage:  The  role  of perceived  access  barriers  and  demographics. Journal  of  Business  Research  2006;  59(9): 999-1007.
  38. Pan  C.  (dissertation).  System  use  of  WebCT in  the  light  of  the  technology  acceptance model:  A  student  perspective.  Florida: University  of  Central  Florida;  2003.
  39. Kulviwat  S.  Self-efficacy  as  an  antecedent  of cognition  and  affect  technology  acceptance. Hempstead:  University  of  Hofstra;  2006.
  40. Igbaria  M,  Iivari  J.  The  effects  of  selfefficacy  on  computer  usage.  Omega  1995; 23(6):  587-605.
  41. Vankatesh  V,  Bala  H.  Technology Acceptance  3  and  a  Research  Agenda  on Interventions,  Decision  Science  2008;  39  (2): 273-315. 
  42. Daniel  F.  Diversity  as  Technology:  A  New Perspective. Journal of Management  2011;  6(2):  31-40.   Diversity
  43. Hwang  Y,  Yi  M.  Predicting  the  use  of  webbased information systems: Intrinsic motivation  and  self-efficacy.  Association  for Information  Systems  AIS  Electronic  Library (AISeL)  2002:  1076-80.
  44. Yi MY,  Hwang  Y.  Predicting  the  use  of  webbased  information  systems:  Self-efficacy, enjoyment,  learning  goal  orientation,  and  the technology  acceptance  model.  Int  J  Hum Comput  Stud  2003;  59(4):  431-49. 
  45. Zare  M,  Samani  S.  Investigating  the  role  of flexibility  and  family  solidarity  in  children`s goal  orientation.  Journal  of  Family  Survey 2008;  4(13):  17-46.  [In  Persian]
  46. Joker  B.  Investigating  the  relationship between  goal  achievement  and  self  regulation among  various  disciplines  in  Shiraz University.  J  Hum  Soc  Sci  Shiraz  Univ. 2005;  4(22):  57-71.  [In  Persian]
  47. Mohsenpoor M,  Hejazi  E,  Kiamanesh  A.  The role  of  self-efficacy,  goal  achievement  and persistence  in  mathematic  course  of  highschool  students  at  Tehran.  Journal  of Educational  Innovation  2006;  5(16):  9-35.  [In Persian]
  48. Bandura  AEC.  Social  Foundations  of  thought and  Action:  A  Social  cognitive  theory. Englewodd  cliffs:  Prentice  Hall;  1986.
  49. Chandra  Sh,  Srivastava  Sh,  Theng  Y.  Role  of cognitive absorption and trust for collaboration  in  virtual  world.  Pacific  Asia Conference  on  Information  Systems  (PACIS) 2009;  1-13
  50. Tan  W.  (dissertation).  An  integrated  view  of cognitive  absorption  in  a  technology mediated  learning  Environment.  Montréal: University  of  Concordia;  2007.
  51. Wolters CA,  Daugherty  SG.  Goal  structures and  teachers’  sense  of  efficacy:  Their  relation and  association  to  teaching  experience  and academic  level.  J  Educ  Psychol  2007;  99(1): 181-93.
  52. Park  B.  (dissertation).  Faculty  Adoption  and Utilization  of  Web-Assisted  Instruction (WAI)  in  Higher  Education:  Structural Equation Modeling (SEM). University  State  Florida;  2003.
  53. Hooman H.  Structural  equation  modeling with  Lisrel  software.  Tehran:  Samt;  2006.  [In Persian]